The cost-effectiveness of HIV testing and treatment initiatives in British Columbia, Canada: 2011-2013

Nosyk B^{1,2}, Min JE¹, Krebs E¹, Zang X¹, Compton M³, Gustafson R³ Barrios R^{1, 3}, Montaner JSG^{1,4}, on behalf of the STOP HIV/AIDS Study Group.

1. BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada; 2. Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; 3. Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada; 4. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Canada; 6. Division of AIDS, Faculty of Medicine, University of British Columbia, Canada; 6. Division of AIDS, Faculty of British Columbia, Canada; 6. Division

Background

- Recognition of the secondary preventive benefits of antiretroviral therapy (ART) has mobilized global efforts to 'seek, test, treat and retain' people living with HIV/AIDS (PLHIV) in HIV care.
- British Columbia (BC) Ministry of Health in Canada launched the "Seek and Treat for Optimal Prevention of HIV/AIDS" (STOP HIV/ AIDS) pilot program in 2010.
- We aimed to determine the cost-effectiveness of a set of HIV testing and treatment engagement interventions, as part of the STOP HIV/AIDS pilot program in 2011-2013.

Results

- Emergency Department testing was the best value at \$30,216 per QALY gained (Table 2) and had the greatest impact on incidence and mortality among PLHIV (Figure 1), while ART initiation provided the greatest QALY gains.
- HIV testing and ART initiation interventions were cost-effective, while the ART retention intervention was not by international standards.
- Delivered in combination at the observed scale and sustained throughout the study period, we estimated a 12.8% reduction in cumulative HIV incidence and a 4.7% reduction in deaths among

Methods

- We used a previously-validated dynamic, compartmental HIV transmission model, with population-level linked health administrative data.
- We estimated the cost-effectiveness of primary care testing (hospital, emergency department, outpatient), ART initiation and ART retention initiatives (Table 1), versus a counterfactual scenario approximating the status quo.
- HIV incidence, mortality, costs (in 2015\$CDN), quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios were estimated.
- Analyses were executed over 25-year time horizons, from a government-payer perspective.

Table 1. Description of selected STOP HIV/AIDS interventions delivered in 2011-2013

Intervention	Description
Hospital-based	Integrate the routine offering of HIV testing into
tosting	clinical practice in hospitals

Table 2. Benefits, costs and incremental cost-effectiveness of STOP HIV/AIDS interventions

25-year time horizon	Intervention^ costs \$CDN (M)	Total costs \$CDN (B)	QALYs (Millions)	ICER*
Status Quo		\$193.01	71.69	
	Δ cost (M)	Δ cost (M)	Δ QALYs	
Hospital-based testing	3.98	10.22	295.88	\$34,544
Outpatient clinic testing	5.04	14.54	333.29	\$43,623
ED testing	3.73	14.03	464.44	\$30,216
ART initiation	9.55	19.60	586.52	\$33,423
ART retention [#]	32.93	48.51	304.02	\$159,551
Combined interventions, sustained	55.23	105.34	1,906.30	\$55 <i>,</i> 258
Combined interventions, 2011-13 only**	15.18	23.17	637.42	\$36,356

M: millions; B: billions; Δ incremental costs/QALYs. ^ Costs of public health intervention; * Incremental Cost-Effectiveness Ratio of the intervention versus the counterfactual 'status quo': ICER = (Cost_{intervention} – Costs_{status quo})/(QALY_{intervention} – QALY_{status quo}). #ART retention includes the initiatives targeting preventing ART dropouts and enhancing re-engagement among treatment-discontinued PLHIV. ** Reverting back to the counterfactual 'status quo'-

testing	clinical practice in hospitals.
Emergency department (ED) testing	Integrate the routine offering of HIV testing into clinical practice in EDs.
Outpatient clinic testing	Increase the routine offering of HIV testing to adult patients who had not been tested in the last year or presented specific risk, clinical symptoms, or the diagnosis of another sexually transmitted disease.
ART initiation	Expanded support to help gain access to ART.
ART retention	Expanded case management to maintain ART adherence and help ART re-initiation among patients who have discontinued ART.

Conclusions

- We have demonstrated the cost-effectiveness and potential longterm impact of five key components of a coordinated combination HIV prevention strategy executed in British Columbia, Canada.
- Our results demonstrate the substantial value these programs have added despite limited-scale implementation, and underline the need to expand and sustain public health intervention efforts to curb the HIV epidemic in BC.

* Combined initiatives to prevent treatment dropout and enhance re-engagement; ** Reverting back to the counterfactual 'status quo'-levels of HIV testing and treatment engagement for the remainder of the study time horizon.

Acknowledgements

This study was funded by the BC Ministry of Health-funded 'Seek and treat for optimal prevention of HIV & AIDS' pilot project and a grant from the National Institutes of Health/ National Institute on Drug Abuse (R01-DA-041747). The funders had no direct role in the conduct of the analysis or the decision to submit the manuscript for publication.

BRITISH COLUMBIA CENTRE for EXCELLENCE in HIV/AIDS

Vancouver CoastalHealth Research Institute Healthier lives through discovery